2003-2004 FIBER TOPOLOGY COMPARISON

Aurora Networks' Passive HFC architecture
Aurora implemented its passive optical networking technology in an evolutionary manner, allowing the carrier to implement a system to gradually upgrade its network, while providing residential services. The technology's passive optical network (PON) architecture can distribute audio, video, and data to individual homes without the need for rewiring. It provides a way to upgrade an existing HFC network with fiber optics, which helps improve video quality, increases bandwidth capacity, and reduces the need for expensive coaxial cable upgrades.

The PON system is designed to support both analog and digital services, providing a flexible solution for carriers. It can transport HFC signals (video, voice, and data) over short distances, while providing sufficient bandwidth for high-speed Internet access. By using a combination of optical amplifiers and advanced signal processing techniques, the PON system can effectively distribute signals to individual homes, while also supporting advanced services such as voice-over-IP (VoIP) and video streaming.

Wavelink's Passive HFC architecture
Wavelink’s Passive HFC architecture uses a single fiber to deliver voice, video, and data services to individual homes. It leverages a combination of optical amplifiers and signal processing techniques to provide a flexible solution for carriers. The architecture can support both analog and digital services, providing a way to upgrade an existing HFC network with fiber optics. It can transport HFC signals (video, voice, and data) over short distances, while providing sufficient bandwidth for high-speed Internet access.

The PON system is designed to support both analog and digital services, providing a flexible solution for carriers. It can transport HFC signals (video, voice, and data) over short distances, while providing sufficient bandwidth for high-speed Internet access. By using a combination of optical amplifiers and advanced signal processing techniques, the PON system can effectively distribute signals to individual homes, while also supporting advanced services such as voice-over-IP (VoIP) and video streaming.

Sci-Fi Infotech's Passive HFC architecture
Sci-Fi Infotech’s Passive HFC architecture uses a single fiber to deliver voice, video, and data services to individual homes. It leverages a combination of optical amplifiers and signal processing techniques to provide a flexible solution for carriers. The architecture can support both analog and digital services, providing a way to upgrade an existing HFC network with fiber optics. It can transport HFC signals (video, voice, and data) over short distances, while providing sufficient bandwidth for high-speed Internet access.

The PON system is designed to support both analog and digital services, providing a flexible solution for carriers. It can transport HFC signals (video, voice, and data) over short distances, while providing sufficient bandwidth for high-speed Internet access. By using a combination of optical amplifiers and advanced signal processing techniques, the PON system can effectively distribute signals to individual homes, while also supporting advanced services such as voice-over-IP (VoIP) and video streaming.

Scientific Atlanta's Passive HFC architecture
Scientific Atlanta's Passive HFC architecture uses a single fiber to deliver voice, video, and data services to individual homes. It leverages a combination of optical amplifiers and signal processing techniques to provide a flexible solution for carriers. The architecture can support both analog and digital services, providing a way to upgrade an existing HFC network with fiber optics. It can transport HFC signals (video, voice, and data) over short distances, while providing sufficient bandwidth for high-speed Internet access.

The PON system is designed to support both analog and digital services, providing a flexible solution for carriers. It can transport HFC signals (video, voice, and data) over short distances, while providing sufficient bandwidth for high-speed Internet access. By using a combination of optical amplifiers and advanced signal processing techniques, the PON system can effectively distribute signals to individual homes, while also supporting advanced services such as voice-over-IP (VoIP) and video streaming.